In the realm of railroad interlocking machines, what does this...
Have in common with this...
Well they are kind of the same thing, the latter just being an improved version of the former that does away with most of the sweat and tears. Just like dinosaurs evolving into birds, 19th century mechanical interlocking systems evolved into smaller and lighter form factors with more and more automation until the technology reached its ultimate dead end. It might seem that a Union Switch and Signal electro-pneumatic power frame is a completely different piece of kit than the "armstrong" monsters that came before, but if we lift the hood we can see how the past influenced the future.
Setting aside who invented what and when, by the end of the 19th century there were two common mechanical interlocking styles coming out of the UK. The Style "A" Machine used a vertically oriented interlocking grid where lever bars on the Y-axis would interact with locking bars on the X-axis via a system of tappets. This style is what tends up show up in books and diagrams as it is the easiest to visually digest. The other system was the Improved Saxby and Farmer Interlocking, this used a horizontally oriented locking grid with lever bars moving in the x-axis interacting with locking bars in the z-axis via dogs. Regardless of the terminology, the key takeaway here is that there were two primary interlocking systems and Union Switch and Signal wound up with the US license for the Improved Saxby and Farmer variety.
Above is an IS&F implementation at the abandoned Buffalo, Rochester and Pittsburgh Railway tower at C&M Jct near Du Bois, PA. We can see how the lever bars are engaged by rotating shafts. The shafts were in turn attached to cranks that were in turn engaged by rockers that changed the back and forth motion of the large interlocking lever into an up and down motion that then rotated the shaft, ultimately sliding the interlocking bar back and forth in the x-axis (if the interlocking conditions allowed). In the photo below we can see how the rockers engage with the cranks behind the row of levers on an more complete lever frame.
So what does this have to do with a Model 14 machine? Well if we literally lift the hood we immediately find the exact same style of longitudinal lever bars, just slightly smaller and more compact.
Because on "power" interlocking machines tower operators no longer needed large physical levers to throw the switch points via a long length of pipe, all the complex mechanisms needed to convert the back and forth lever motion into longitudinal motion can be replaced by a miniature rotating crank.
In case you were not yet convinced, the shafts that used to move the lever bars in the x-axis are still around to engage with the locking magnets controlled by the relay logic elsewhere in the tower.
In contrast, the other major type of North American pattern power interlocking machine, the GRS/Taylor "Pistol Grip" type, used the vertically oriented type of locking grid.
This horizontal vs vertical orientation explains why the largest Style "A" type frames were often in tall/narrow buildings, like STATELINE while the largest IS&F frames were in squat buildings such as DOLTON JCT.
STATELINE Tower Outside |
STATELINE Tower Inside |
DOLTON JCT Tower Outsde |
DOLTON JCT Tower Inside |
The US&S "Model 14" type interlocking machine was not even the final iteration of the Improved Saxby and Farmer type interlocking! That distinction belongs to the Westinghouse Brake and Saxby Signals Style V machine developed for the London Underground in the 1950's and used as late as 1967 for the all new London Victoria Line. The Style V was a Model 14 style locking bed turned on a vertical orientation with the levers being remotely actuated, typically using compressed air, allowing the interlocking to be remote controlled. I will probably give Style V's their own post at some point, but I wanted to give them a little shout-out in this context. Here we can see a Style V in action a bit after 1:31:25 in a 1960's Victoria Line construction public information film.
In its time railroad signaling was at the vanguard of high tech right along with the telephone system. With the pace of technology today, it is hard to believe that the concept of IS&F mechanical interlocking would be in use from before electric traction was invented up through the ATO equipped Victoria line. I guess it will sort of be how flavors of Z80 microprocessor will be in mainstream use, decades into the future.
All due respect, your headline has a typo.
ReplyDelete